
Teaching SIMD Instructions using Intel Intrinsics
in Computer Organization Course

Satish Puri
Department of Computer Science

Marquette University
Milwaukee, WI

Email:satish.puri@marquette.edu

Abstract—This talk focuses on integrating high performance
computing topics in Computer Organization class at Marquette
University. SIMD parallelization was covered in the class using
CPU and GPU. On Intel CPU, Advanced Vector Extension (AVX)
was used for teaching vectorization at the assembly programming
level. The content was covered in two fifty minutes lectures, one
lab, and one homework. On GPU, CUDA was used with image
manipulation example. We describe the topics covered along with
programming exercises and homework assignments. The course
materials, lecture slides and lecture video has been shared online.

I. INTRODUCTION

This lightning talk is based on experience of teaching Com-
puter Organization and Design class at Marquette University
for second year undergraduate students in Computer Science.
The class follows the “Computer Organization and Design”
book written by Patterson and Hennessey [2]. Topics covered
are ARM assembly programming, logic operations, integer and
floating point representation, memory hierarchy, multi-cores
and graphics processing units. Vector instructions and Single
Instruction Multiple Data (SIMD) are covered after the chapter
on ARM instruction set architecture.

First I will mention the context and motivation. Third
chapter of the course book is “Arithmetic for Computers”. This
chapter has content on subword parallelism. The book chapter
shows matrix multiplication functions with and without using
Intel Intrinsics [1]. In the twelve pages of the book chapter,
ARM and x86 SIMD extensions are covered. Using Advanced
Vector Extensions (AVX) in x86 instruction set, upto 3.85X
speedup is mentioned for single thread compared to normal
matrix multiplication in C running on Intel processor. The
book did not chose ARM Neon instructions to teach subword
parallelism through programming example. This motivated the
use of x86 extensions. Rather than directly teaching SIMD
parallelism for matrix multiplication, simpler examples were
created for teaching.

Motivation: In the book, subword parallelism appears to-
wards the end of the chapter (subsections 3.6 to 3.8). The
book chapter does not provide a complete program, only a
function is given to illustrate subword parallelism. So, the
motivation was to complement the existing material with
additional contents like lecture slides, programming labs,
quizzes and homework assignments targeted towards teaching
subword parallelism in more detail. Additional content on

vector data types, SIMD registers, intrinsic functions and
memory alignment was developed.

In the class, Single Instruction Multiple Data (SIMD) con-
cept is illustrated by showing scalar and vector assembly
pseudo-code to do vector addition where two input arrays are
added element-wise to produce output array. Embarrasingly
parallel tasks like image manipulation is described to motivate
SIMD processing. SIMD functions are used in C code first and
then assembly code produced by compiler is shown. First Intel
Intrinsics was covered and then towards the end of the course,
GPU architecture was covered with a simple CUDA program.

Intrinsics are C-functions to perform data movement, logic
and arithmetic computations. Intrinsics get translated to vector
instructions by compiler. There are few benefits of starting
with Intrinsic functions rather than vector instructions directly.
First of all, writing a program using C functions is easier.
ARM instruction set was taught in assembly level following
the format of the book. So, programming exercises for SIMD
instructions based on x86 assembly would have been difficult.
Therefore, rather than teaching second x86 assembly language,
teaching intrinsics was a simpler approach. To write a full
fledged program, it is easier to use C functions instead
of vector instructions in assembly. Examples of Advanced
Vector Extensions (AVX) were shown in class. Programming
assignments and laboratory assignments were based on AVX
as well.

The lectures were separated into two distinct parts:
Part 1 covered the following topics:

• Conceptual ideas on subword parallelism and SIMD
instructions.

• Few intrinsic functions to load, store and compute.

Part 2 covered the following topics:

• Loop transformation to show how to apply intrinsics in
a for loop. An example was shown to demonstrate loop
unrolling technique. The example showed how unrolling
four iterations of a for loop makes it easy to apply
intrinsic function for double precision floating point type
where width of the register is 256 bits.

• Aligned memory allocation.
• Demonstration on Intel processors.
• Quiz, lab problems and HW assignments.

Table below shows one to one mapping between a data type
in C (scalar) and a corresponding data type in AVX (vector)
that was covered in class.

C data type AVX data type
int m256i
float m256
double m256d

Table below shows few AVX intrinsic functions and the
corresponding assembly instructions covered in the class.

AVX Intrinsic function Assembly instruction
mm256 load pd vmovapd
mm256 store pd vmovapd
mm256 mul pd vmulpd
mm256 broadcast sd vbroadcastsd
mm256 set pd initialization

Code Listing 1 shows an example to illustrate the intrinsic
functions to do load, store and compute operations on array
elements.

Code Listing 1 to illustrate intrinsic functions
double *arr = {1.0, 2.0 , 3.0, 4.0, 5.0, 6.0, 7.0, 8.0};
// Load first four numbers from array arr

m256d a0 = mm256 load pd(arr);
// Load last four numbers from array arr

m256d a4 = mm256 load pd(arr + 4);
//Perform four pairwise additions

m256d sum = mm256 add pd(a0, a4);
double arr[4] = {0, 0, 0, 0};

// Copy the contents of sum to array arr
mm256 store pd(arr, sum);

GCC compiler was used to compile and generate the assem-
bly code in order to see the vector instructions corresponding
to the functions used in C program with intrinsics. immintrin.h
header file is required for compilation. -mavx flag has to be
used in compilation command. Running the code is same as
an ordinary C program. Students were asked to inspect the
assembly code produced by compiler using -O2 and -O3 flags.

For standard C-based matrix multiplication, the code gen-
erated by the compiler was shown first and then the code
generated using the function with intrinsics was shown to
compare the vector instructions in the two versions. The parts
of the code where compiler generated sub-optimal vector code
was highlighted. Following this exemplar, students repeated
this exercise for the C program they had written. Students
compared the assembly code generated by regular C program
with optimized assembly code generated when intrinsics were
used.

The difference in vectorization was explained as follows. In
sub-optimal code, compiler generated code had XMM registers
with 128 bits width. In the version with intrinsics, compiler

generated code had YMM registers with 256 bits width. Wider
registers have the benefit of packing more data elements in a
single register. For data movement, vmovsd was generated in
the sub-optimal code instead of vmovapd. s stands for scalar
in vmovsd. p stands for packed in vmovapd. The last character
d is for double precision. vmovsd loads 1 element into XMM
register, while vmovapd loads 4 elements into YMM register.
Similarly, vmulsd was generated by compiler in the sub-
optimal code instead of vmulpd. For matrix multiplication, this
results in more than 3X speedup difference between the two
versions on an Intel processor.

A. Quiz

Here are few sample questions from a quiz:
Q1. World’s fastest ARM processor Fugaku by Fujitsu has

a SIMD register which is 2048 bits wide. How many double
precision floating point data can be stored in one SIMD
register?

Q2. What does the array arr contain after the code has been
executed as shown in Code Listing 1?

Q3. Let us assume that array arr is stored in a block of
memory with starting location (3200)10 and we are trying to
use load function as shown below:

m256d first = mm256 load pd(arr + 1);
Will this line of code work?

m256d first = mm256 load pd(arr + 1);
Question 3 is designed to test the memory alignment issue.

Memory alignment issue can lead to program crash. 32 byte
alignment requirement is violated because address of (arr+1)
is 3208 which is not completely divisible by 32.

B. Programming Exercises

The course materials containing programming exercises
covered in laboratory, quizzes and homework problems has
been shared on GitHub [4]. Lecture video has been shared
online on Youtube [3].

Programming lab question was polynomial evaluation. Se-
quential program was provided and the task was to do SIMD
parallelization of the loops by adding intrinsic functions.
After finishing the coding part, next task was to benchmark
the execution time and calculate GFLOPS and speedup with
respect to baseline. Image manipulation example using in-
trinsics was considered but eventually not used because of
higher complexity of the code. However, for GPU, image
manipulation using CUDA code was shown in the class.

One common problem that was encountered in labs was
misspelling in intrinsics that was creating compilation errors.

REFERENCES

[1] Intrinsics guide. https://software.intel.com/sites/landingpage/IntrinsicsGuide/.
[2] David A Patterson and John L Hennessy. Computer organization and

design ARM edition: the hardware/software interface. Morgan kaufmann,
2016.

[3] Satish Puri. Intel intrinsic functions for simd parallelism (vectorization).
https://www.youtube.com/watch?v=KABGmD7BJ28t=2750s.

[4] Satish Puri. Teaching intel intrinsics for simd parallelism.
https://github.com/satishphd/Teaching-Intel-Intrinsics-for-SIMD-
Parallelism.

